next up previous contents index
Next: 3.1.9 IBRAV=205 simple trigonal Up: 3.1 Input of lattice Previous: 3.1.7 IBRAV=5 simple trigonal


3.1.8 IBRAV=105 simple trigonal lattice(単純三方格子)

CELLDM(1) $=a$, CELLDM(4) $=\cos{\alpha} (0 < \alpha < 120^{\circ})$,
$p\equiv a \sqrt{1-\cos{\alpha}}$, $q\equiv 2a (\cos{\alpha}- 1/2)/
( \sqrt{1+2\cos{\alpha}} + 2 \sqrt{1-\cos{\alpha}})$
$\Omega=p^{2}(2p + 3q)$
$({\bf a}_{1},{\bf a}_{2},{\bf a}_{3})= ({\bf x},{\bf y},{\bf z})
\left(
\beg...
...y}{ccc}
p+q & q & p+q\\
q & p+q & p+q\\
p+q & p+q & q
\end{array} \right)$
$({\bf b}_{1},{\bf b}_{2},{\bf b}_{3})= \frac{2 \pi}{a}
({\bf x},{\bf y},{\bf ...
...+3q)}& \frac{a(p+q)}{p(2p+3q)}&
-\frac{a(p+2q)}{p(2p+3q)}
\end{array} \right)$

The form of IVRAV=2 is approached when approaching $\alpha=60^{\circ}$. It is the trigonal lattice which made the lattice of IBRAV=2 distorted in the $\langle 111\rangle$ directions.

$\alpha=60^{\circ}$に近づくとき、IBRAV=2の形式に近づくようになっている。 IBRAV=2の格子を $\langle 111\rangle$方向に歪ませた三方格子になっている。


next up previous contents index
Next: 3.1.9 IBRAV=205 simple trigonal Up: 3.1 Input of lattice Previous: 3.1.7 IBRAV=5 simple trigonal
Copyright (C), Tatsuki Oda (oda@cphys.s.kanazawa-u.ac.jp, Kanazawa University)