next up previous
Next: $B6-3&>r7o(B Up: jj-kougi Previous: 10 $BB?N3;R7O$N1?F0J}Dx<0(B

11 $B?tCM@QJ,(B

$BHyJ,J}Dx<0$r?tCM@QJ,$9$k$K$O!"HyJ,J}Dx<0$r:9J,J}Dx<0$G6a;w$9$k!#(B

$\displaystyle m\frac{d^2\vec{r}_{i}(t)}{dt^2}$ $\displaystyle =$ $\displaystyle \vec{F}_{i}(x,t)$ (119)

$BNc!'%Y%k%l$NJ}K!(B

$\displaystyle \frac{d^2}{dt^2}\vec{r}_{i}$ $\displaystyle \rightarrow$ $\displaystyle \frac{1}{(\Delta t)^2}\left\{\vec{r}_{i}(t+\Delta t)-
2\vec{r}_{i}(t)+\vec{r}_{i}(t-\Delta t) \right\}$ (120)
$\displaystyle \frac{d}{dt}\vec{r}_{i}$ $\displaystyle \rightarrow$ $\displaystyle \frac{1}{(\Delta t)^2}\left\{\vec{r}_{i}(t+\Delta t)-\vec{r}_{i}(t-\Delta t)
\right\}$ (121)
$\displaystyle m_{i} \frac{d^2\vec{r}_{i}}{dt^2}$ $\displaystyle =$ $\displaystyle \vec{F}_{i}$ (122)
  $\displaystyle \downarrow$    

$\displaystyle \left \{
 \begin{array}{rr}
 \vec{r}_{i}(t+\Delta t) & \;=\;\: 2...
...)-\vec{r}_{i}(t-\Delta t)\right\} 
 \qquad\qquad $BB.EY:BI8(B
 \end{array}
 \right.$ (123)

$B;~9o!'(B     $ t=n\Delta t \quad (n=1,2,3,\cdots)$




$B=i4|>r7o(B
$B%Y%k%lK!$G$O(B

$\displaystyle \left \{
 \begin{array}{ll}
 $B;~9o(Bt$B$G$N0LCV$HNO! (124)

$B$N$h$&$KA22=<0$,$G$-$F$$$k$N$G!"=i4|G[CV$+$i(B1$B%9%F%C%WL\$r5a$a$k<0$OM?$($i$l$F(B $B$$$J$$!#(B1$B%9%F%C%WL\$NM?$(J}$K$b9)IW$,I,MW$G$"$k!#(B
$B%Y%k%lK!$rMQ$$$k$K$O=i4|G[CV$@$1$G$J$/(B $ t=\Delta t$ $B$G$N0LCV:BI8$bI,MW!#0l$D$NJ}K!$H$7$F(B
$\displaystyle \vec{r}_{i}(\Delta t)$ $\displaystyle =$ $\displaystyle \vec{r}_{i}(0)+ \Delta t \vec{v}_{i}(0)+\frac{(\Delta t)^2}{2M_i}
\vec{F}_{i}(0)$ (125)

$B$J$I$rMQ$$$F(B $ t=\Delta t$ $B$N%G!<%?$r:n$k$3$H$,$G$-$k!#$3$NJ}K!$,I,$:$7$bNI$$J}K!(B $B$G$O$J$$!#=i4|2aDx$r@53N$K7W;;$7$?$$>l9g$O!"(B $ \vec{r}_{i}(\Delta t)$ $B$N7W;;$K(B $BBP$7$FJL$N7W;;J}K!$r9)IW$9$kI,MW$,$"$k!#(B

$BH/E8!'(B $B%Y%k%l$NJ}K!(B($B>\:Y(B)
$BJ,;RF0NO3X$GMQ$$$i$l$kBeI=E*$J

$\displaystyle r_i(t+\Delta t)$ $\displaystyle =$ $\displaystyle 2r_i(t)-r_i(t-\Delta t)+
\frac{(\Delta t)^2}{m}F_i(t)+o\left((\Delta t)^4\right)$ (126)
$\displaystyle v_i(t)$ $\displaystyle =$ $\displaystyle \frac{1}{2(\Delta t)}\left\{r_i(t+\Delta t)-
r_i(t-\Delta t)\right\}+o\left((\Delta t)^2\right)$ (127)

$B$[$\F1$8?t$r0z$-;;$9$k$H!"M-8z?t;z$N7eMn$A$,5/$3$k!#$=$3$G!"(B

$\displaystyle \Delta r_i(t+\Delta t)$ $\displaystyle \equiv$ $\displaystyle r_i(t+\Delta t)-r_i(t)$ (128)

$B$H$*$/$H!"<0(B(126)$B$+$i!"(B
$\displaystyle r_i(t+\Delta t)-r_i(t)$ $\displaystyle =$ $\displaystyle r_i(t)-r_i(t-\Delta t)+\frac{(\Delta t)^2}{m}F_i(t)$ (129)

$B$H=q$1$k!#$=$3$G!"%Y%k%lK!$N:9J,2=<0$O!"
$\displaystyle \Delta r_i(t+\Delta t)$ $\displaystyle =$ $\displaystyle \Delta r_i(t)+
\frac{(\Delta t)^2}{m}F_i(t)$ (130)
$\displaystyle r_i(t+\Delta t)$ $\displaystyle =$ $\displaystyle r_i(t)+\Delta r_i(t+\Delta t)$ (131)
$\displaystyle v_i(t)$ $\displaystyle =$ $\displaystyle \frac{1}{2(\Delta t)}\left\{\Delta r_i(t+\Delta t)+
\Delta r_i(t)\right\}$ (132)

$B:BI8$NJQ2=J,(B $ \Delta r_i(t)$ $B$@$1$r7W;;$7$F$f$/$N$G!"F1DxEY$N?t$N0z$-;;(B $B$K$h$k7eMn$A$rKI$0$3$H$,$G$-$k!#(B

$B7W;;5!$K$O!"(B $ {\Delta r_i(t)}$ $B$r5-21$5$;$F$*$/!#;~9o(B$ t$ $B$G$N:BI8$O!"(B

$\displaystyle r_i(t)$ $\displaystyle =$ $\displaystyle r_i(t-\Delta t) + \Delta r_i(t)$ (133)
  $\displaystyle =$ $\displaystyle r_i(t-2\Delta t)+\Delta r_i(t-\Delta t)+\Delta r_i(t)$ (134)
  $\displaystyle =$ $\displaystyle \cdots$ (135)
  $\displaystyle =$ $\displaystyle r_i(0)+\sum_{k=1}^{n\Delta t}\Delta r_i(k\Delta t)$ (136)

$B$HI=$5$l$k!#(B $ r_i(t)$ $B$rJL$K5-21$5$;$F$*$-!"NO$N7W;;$KMQ$$$k!#(B



$BB.EY%Y%k%lK!(B$B$N>l9g(B
$ r_i(t)$B! $B$rM?$($F(B $ F_i(t)$ $B$O(B$ r_i(t)$ $B$rMQ$$$F7W;;(B

$\displaystyle \Delta r_i(t+\Delta t)$ $\displaystyle =$ $\displaystyle v_i(t)(\Delta t)+\frac{(\Delta t)^2}{2m}F_i(t)+o\left((\Delta t)^3\right)$ (137)
$\displaystyle r_i(t+\Delta t)$ $\displaystyle =$ $\displaystyle r_i(t)+\Delta r_i(t+\Delta t)
\qquad\qquad \longrightarrow F_i(t+\Delta t)$B$r7W;;(B$ (138)
$\displaystyle \Delta v_i(t+\Delta t)$ $\displaystyle =$ $\displaystyle \frac{(\Delta t)^2}{2m}\left\{
F_i(t+\Delta t)+F_i(t)\right\}+o\left((\Delta t)^3\right)$ (139)
$\displaystyle v_i(t+\Delta t)$ $\displaystyle =$ $\displaystyle v_i(t)+\Delta v_i(t+\Delta t)$ (140)

$BLd!'<0(B(137)-(140)$B$rF3=P$;$h!#(B


next up previous
Next: $B6-3&>r7o(B Up: jj-kougi Previous: 10 $BB?N3;R7O$N1?F0J}Dx<0(B
Copyright (C), Tatsuki Oda (oda@cphys.s.kanazawa-u.ac.jp, Kanazawa University)